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Abstract
The inhomogeneous extension of equations of the reaction–diffusion type is
investigated by means of the covariant prolongation structures theory. We
construct the sl(2, R) × R(ρ(t)) prolongation structure for an inhomogeneous
equation of the reaction–diffusion type and give the corresponding AKNS-type
equations and the Bäcklund transformation.

PACS numbers: 02.30.Ik, 02.40.−k, 02.30.Rz

1. Introduction

Equations of the reaction–diffusion type play a crucial role in many research areas. Based upon
applications in biological systems and chemical autocatalysis, one of the reaction–diffusion
types has received considerable attention [1],

ut − uxx + 2u2v − 2ku = 0,

vt + vxx − 2uv2 + 2kv = 0.
(1)

This equation also emerges in the gauge formulation of the (1+1)-dimensional gravity [2].
From the geometric equivalent point of view, the geometrical equivalent counterpart of (1) is
the following modified Heisenberg ferromagnet (HF) equation [3, 4],

St = S ×̄ Sxx, (2)

where S = (s1, s2, s3) with S2 = s2
1 + s2

2 − s2
3 = 1 and s3 > 0.

The prolongation structure theory proposed by Wahlquist and Estabrook (W–E) [5, 6]
is a very useful tool in the analysis of (1+1)-dimensional integrable equations, such as the
KDV equation, the higher order nonlinear Schrödinger equation and the sine-Gordon equation
[7–12]. This theory can also be interpreted in terms of Cartan–Ehresmann connection from
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the viewpoint of differential geometry [13, 14]. By using W–E’s prolongation structure
theory, Alfinito et al [15] carried out the detailed integrable analysis of (1). It indicates that
this equation allows an incomplete prolongation algebra admitting an infinite-dimensional
realization of the Kac-Moody type. Note that the prolongation structure equations given by
W–E are not manifestly covariant under the transformation of generators of the prolongation
algebra. By means of the theory of nonlinear realization of connection proposed by Lu
et al [16], Guo et al [17] proposed a covariant geometry theory for the prolongation structures
of the nonlinear evolution equation. In this covariant prolongation structures theory, a set of
fundamental equations for the prolongation structure was presented. Based upon this theory,
the SL(2, R)×R(l) principal prolongation structure for AKNS systems has been constructed
and a new set of infinite number of polynomial conservation currents corresponding to the
nonlinearity of SL(2, R) group manifold has also been presented [18]. The merit of this
prolongation structures theory is that it is not only the covariant geometry theory, but also
very helpful in obtaining the Bäcklund transformation and other properties of the nonlinear
integrable system. In this paper, we shall investigate the inhomogeneous extension of
equation (1) by using this covariant prolongation structures theory.

2. Covariant theory for prolongation structure of nonlinear evolution equation

Let us start with a short summary of the covariant theory for prolongation structure of NEE
that will be useful in what follows. For a more detailed description we refer the reader to
[16, 17, 19].

For a given (1+1)-dimensional NEE, we can give a set of equivalent first-order partial
differential equations with the independent variables (x, t, ul), l = 1, 2, . . . , n. Then we
can define a set of two forms αi such that it constructs a closed ideal. When these two
forms restricted on the solution manifold U = {x, t, ul(x, t)} become zero, we recover the
original (1+1)-dimensional NEE. Now let us consider a principal bundle P(N,G) and a bundle
E(N, Y,G, P ) associated with P, where N is base space, G is structure group whose algebra is
the prolongation algebra and Y is standard fibre. Define a local cross-section on E, σ : N → E

and its covariant derivatives

ωi = dyi + �i
µ(X, y) dxµ, (3)

where X = {xµ} = {x, t, ul} and

�i
µ = �a

µ(X)λi
a(y), (4)

in which �a
µ(X) are the coefficients of the connection on P and λi

a(y) is the coefficients of
the generators of the prolongation algebra. We can introduce a connection induced from the
nonlinear connection one form ωi ,

Li
k = Li

kµ dxµ =
[
λi

a(y)
∂λa

k

∂xµ
+ Ca

bc�
b
µ(x)λc

k(y)λi
a(y)

]
dxµ, (5)

which is linear under the coordinate transformations on Y and the transformations induced
by the action of G on Y. By using the induced connection Li

kµ, we can define the following
covariant exterior derivative,

D∗ωi = dωi + Li
j ∧ ωj = − 1

2Fa
µνλ

i
a dxµ ∧ dxν + 1

2Mi
jkω

j ∧ ωk, (6)

D∗Li
j = dLi

j + Li
k ∧ Lk

j = 1
2Ki

jµν dxµ ∧ dxν, (7)
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where Fa
µν and Mi

jk are the curvature coefficients on P and the torsion coefficients in the fibre
space, respectively. They can be expressed as

Fa
µν =

(
∂�a

µ

∂xν
− ∂�a

ν

∂xµ
+ Ca

bc�
b
µ�c

ν

)
, (8)

Mi
jk = λa

j

∂λi
a

∂yk
− λa

k

∂λi
a

∂yj
, (9)

Ki
jµν = ∂Li

jν

∂xµ
− ∂Li

jµ

∂xν
+ Li

lµLl
jν − Li

lνL
l
jµ. (10)

If we extend the closed ideal I on N to the closed ideal I ′ = {αi, ωj } on E, we have

D∗ωi ⊂ I ′. (11)

Using (6) and the closed ideal condition, we obtain the following covariant fundamental
equations determining the prolongation structure,

1
2Fa

µνλ
i
a dxµ ∧ dxν = f i

βαβ, (12)

1
2Mi

klω
k ∧ ωl = ηi

l ∧ ωl, (13)

where f i
β and ηi

l are the zero and one forms on N, respectively. It should be pointed out that
we may completely determine the prolongation structure of a given nonlinear system when
the solutions of one fundamental equation can be found.

3. The prolongation structure of the equation of the reaction–diffusion type

We have introduced the covariant theory for prolongation structure of nonlinear evolution
equation in the previous section. Based upon this theory, we will discuss the corresponding
prolongation structure for the inhomogeneous extension of equation (1) in this section.

To begin with, let us introduce the new items (h(x, t)u)x and (g(x, t)v)x into (1),

ut − uxx + 2u2v − 2ku − (hu)x = 0,

vt + vxx − 2uv2 + 2kv − (gv)x = 0,
(14)

where the functions h(x, t) and g(x, t) need to be determined. Taking ux = p and vx = q

as the new independent variables, we can define the following set of two forms in the six-
dimensional space N = {x, t, u, v, p, q},

α1 = du ∧ dt − p dx ∧ dt,

α2 = dv ∧ dt − q dx ∧ dt,

α3 = −dp ∧ dt − du ∧ dx + (2u2v − 2uk − hxu − hp) dx ∧ dt,

α4 = −dq ∧ dt − dv ∧ dx + (−2v2u + 2vk − gxv − gq) dx ∧ dt,

(15)

such that they constitute a closed ideal I. When the above two forms restricted on the solution
manifold U = {x, t, u(x, t), v(x, t), p(x, t), q(x, t)} become zero, we recover equation (14).

According to the covariant prolongation structure theory, we extend the ideal I by adding
to it a set of one forms,

ωi = dyi + �a
µλi

a dxµ, (16)
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where {xµ, µ = 1, 2, . . . , 6} = {x, t, u, v, p, q}. The closed condition of the extended ideal
I ′ = {αi, ωj } leads to the covariant fundamental equations. Substituting the above two forms
αi into fundamental equation (12) , we have

F i
12 − pF i

23 − qF i
24 − 2u(uv − k)F i

25 − 2v(uv − k)F i
26 = 0,

F i
15 = F i

16 = F i
34 = F i

35 = F i
36 = F i

45 = F i
46 = F i

56 = 0,

F i
13 − F i

25 = 0, F i
14 + F i

26 = 0.

(17)

Solving equation (17), we obtain the following connection coefficients on the sl(2R) × R(ρ)

principal bundle,

�1
1 = −2ρ, �2

1 = −u, �3
1 = −v,

�1
2 = −2(uv − k − 2ρ2 + hρ), �2

2 = −(p − 2ρu + hu), �3
2 = q + 2ρv − gv,

(18)

the other components are zero, and the parameter satisfies

ρt = ρhx, ρx = 0, h = g. (19)

λi
a in (16) are the coefficients of the generators of the prolongation algebra sl(2R). The

commutation relation of sl(2R) is given by

[X1, X2] = −X2, [X1, X3] = X3, [X2, X3] = −2X1, (20)

where

Xa = λi
a(y)

∂

∂yi

, a = 1, 2, 3. (21)

From (19), it is easy to see that the function h takes the following expression,

h = φ(t)x + ψ(t). (22)

It is noted that the parameter ρ in the sl(2, R) × R(ρ) prolongation structure of MKDV
equation [17] is a constant. Due to the introduction of the functions h(x, t) and g(x, t), the
parameter ρ depends on the time t in this paper. In fact, ρ can be regarded as the spectral
parameter. We will see it in the following discussion.

Let us take a two-dimensional linear space as the prolongation space. A linear realization
of the prolongation algebra can be written as

X1 = 1

2

(
y2

∂

∂y2
− y1

∂

∂y1

)
, X2 = −y2

∂

∂y1
, X3 = −y1

∂

∂y2
. (23)

By requiring ωi |U = 0 for (16), we obtain the AKNS-type equations

Yx = −FY, Yt = −GY, (24)

where Y = (y1, y2)
�,

F =
[
ρ u

v −ρ

]
, (25)

G =
[
uv − k − 2ρ2 + hρ ux − 2ρu + hu

−(vx + 2ρv) + hv −uv + k + 2ρ2 − hρ

]
, (26)

and the spectral parameter satisfies (19). When h = 0, the matrices F and G reduce to the
results of (1) derived in [15].
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Taking a one-dimensional space as the prolongation space, we have a nonlinear realization
of the prolongation algebra

X1 = y
∂

∂y
, X2 = y2 ∂

∂y
, X3 = − ∂

∂y
. (27)

On the requirement ωi |U = 0 for (16), the following Riccati equation can be obtained,

yx = uy2 + 2ρy − v,

yt = [ux + (h − 2ρ)u]y2 + 2[(uv − k) − 2ρ2 + ρh]y + vx + (2ρ − h)v.
(28)

Based upon the Riccati equation (28), we may get the Bäcklund transformation of (14),

(u + u′)x = ∓(u − u′)[4ρ2 + (u + u′)(v + v′)]
1
2 ,

(v + v′)x = ∓(v − v′)[4ρ2 + (u + u′)(v + v′)]
1
2 ,

(29)

and

∓(u + u′)t = (u − u′)x[4ρ2 + (u + u′)(v + v′)]
1
2 ± (u + u′)(uv + u′v′)

+ h(u − u′)[4ρ2 + (u + u′)(v + v′)]
1
2 ,

±(v + v′)t = (v − v′)x[4ρ2 + (u + u′)(v + v′)]
1
2 ± (v + v′)(uv + u′v′)

− h(v − v′)[4ρ2 + (u + u′)(v + v′)]
1
2 . (30)

It is known that the geometrical equivalent counterpart of (1) is the modified HF
equation (2). As done in [4], one can easily prove that the geometrical equivalent counterpart
of (14) is the inhomogeneous modified HF equation

St = S ×̄ Sxx + hSx, (31)

where the function h is given by (22). Its Lax representation is

∂ϕ

∂x
= Uϕ,

∂ϕ

∂t
= V ϕ, (32)

in which

U =
3∑

i=1

ρsiτi,

V =
3∑

i=1

ρ(s ×̄ sx)iτi +
3∑

i=1

(ρh + ρ2)siτi,

(33)

where the spectral parameter satisfies (19) and τi are the generator of su(1, 1), i.e.,

τ1 = 1

2

(
1 0
0 −1

)
, τ2 = 1

2

(
0 −i

i 0

)
, τ3 = 1

2

(
0 i

i 0

)
.

4. Summary

We have investigated the inhomogeneous equation of the reaction–diffusion type by using
the covariant prolongation structure theory. The sl(2, R) × R(ρ(t)) prolongation structure
for the equation of the reaction–diffusion type was constructed in this paper. For this
covariant prolongation structure theory, the 2 × 2 AKNS inverse scattering equations and the
corresponding Riccati equations can be easily obtained by taking the different prolongation
space. It should be mentioned that a lot of questions remain to be understood for the time-
dependent spectrum parameter. Some of them will be in the forthcoming publication.
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The (2+1)-dimensional integrable equations are of general interest [20–23]. Recently
the integrable (2+1)-dimensional modified HF models [22] have been investigated by using
Morris’s prolongation structure theory [24]. Through the motion of Minkowski space curves
endowed with an additional spatial variable, the corresponding geometric equivalent (2+1)-
dimensional integrable extensions of the reaction–diffusion equation have also been presented

ψ̂ t + ψ̂xy − γ̂ ψ̂ = 0,

φ̂t − φ̂xy + γ̂ φ̂ = 0,

γ̂x = −∂y(φ̂ψ̂).

(34)

It should be mentioned that the more general (2+1)-dimensional reaction–diffusion
equations can be written as [25],

ut = D1 � u + b1u
2v + b2uv2 + b3u + b4v + b5,

vt = D2 � v + c1u
2v + c2uv2 + c3u + c4v + c5,

(35)

where � is the Laplace operator in two-dimensional orthonormal coordinates, D1 and D2

are the diffusion constants, bi and ci, i = 1, 2, . . . , 5, are the coefficients. The covariant
prolongation structure theory has been generalized to the case of higher dimensions [26], where
self-dual Yang–Mills equations have been well discussed. Whether the covariant prolongation
structure theory can be used to get the more integrable higher dimensional reaction–diffusion
equations is under investigation.
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